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Introduction
The prevalence of infections caused by difficult-to-treat resistant Gram-negative bacteria (DTR-
GNB) is rapidly increasing, and along with constantly evolving epidemiology, represents a 
major challenge to the management of hospital-acquired infections (HAIs).1 In this regard, DTR 
describes treatment-limiting resistance to all first-line agents, that is, all β-lactams, including 
carbapenems and previous generation β-lactamase inhibitor combinations (BLICs), and 
fluoroquinolones.2 Arguably, the greatest threat from DTR-GNB comes in the form of 
carbapenem-resistant Enterobacterales (CRE) such as carbapenemase-producing Klebsiella 
pneumoniae.3

Antibiotic stewardship of hospital-acquired infections because of difficult-to-treat resistant 
(DTR) Gram-negative bacteria is a global challenge. Their increasing prevalence in South 
Africa has required a shift in prescribing in recent years towards colistin, an antibiotic of 
last resort. High toxicity levels and developing resistance to colistin are narrowing treatment 
options further. Recently, two new β-lactam/β-lactamase inhibitor combinations, 
ceftazidime-avibactam and ceftolozane-tazobactam were registered in South Africa, 
bringing hope of new options for management of these life-threatening infections. However, 
with increased use in the private sector, increasing levels of resistance to ceftazidime-
avibactam are already being witnessed, putting their long-term viability as treatment 
options of last resort, in jeopardy. This review focuses on how these two vital new antibiotics 
should be stewarded within a framework that recognises the resistance mechanisms 
currently predominant in South Africa’s multi-drug and DTR Gram-negative bacteria. 
Moreover, the withholding of their use for resistant infections that can be treated with 
currently available antibiotics is a critical part of stewardship, if these antibiotics are to be 
conserved in the long term. 
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There has been an unprecedented proliferation of 
carbapenemase encoding genes, the evolutionary 
epidemiology and resistome dynamics of which were 
recently highlighted in several local studies.4,5,6 Widespread 
transmission is reported, and is mediated by clonal, 
multiclonal and horizontal mechanisms.4,5,6 Enhanced 
surveillance for CRE causing blood-stream infections (BSIs) 
in South Africa, recently demonstrated a significant increase 
in the proportion of cases especially from Gauteng and the 
Western Cape.4

Moreover, the proportion of CRE isolates, specifically K. 
pneumoniae, phenotypically non-susceptible to class 2 
carbapenems (imipenem, meropenem and doripenem) 
ranges from 50% to 53%, while non-susceptibility to 
ertapenem is 86%, reflecting production of diverse 
carbapenemases, with a predominance of OXA-48, and 
reduced permeability (porin reduction or alteration). The 
dire situation with regard to treatment options is reflected by 
the fact that up to 22% and 13% of CRE isolates are also non-
susceptible to tigecycline and colistin, respectively, and the 
overall in-hospital mortality regardless of therapy is 38%.4

Available options for the treatment of HAIs caused by CR-
Pseudomonas aeruginosa (P. aeruginosa) are also scarce, and 
recent reports emphasising the spread of colistin non-
susceptibility in environments with high volumes of colistin 
or polymyxin usage, are a major concern.3 South Africa is no 
exception, with CR among P. aeruginosa isolated from 
bacteraemic patients in the public and private sectors, 
ranging from 30% to 40%, while concurrent colistin resistance 
has emerged and susceptibility to this antibiotic of last resort 
has decreased year on year.7,8 Similarly, agents to which 
DTR-Acinetobacter baumannii are susceptible are very few in 
number and there is a paucity of new antibiotics in the 
pipeline for these pathogens. 

A major challenge is how best to optimise care for infections 
caused by DTR-GNB in the context of diminishing antibiotic 
options that may be less effective and associated with 
higher toxicity. There is a need for appropriate and effective 
initial therapy while promoting antibiotic stewardship 
(ABS) principles, emphasising the continued use of existing 
antibiotics to which the bacteria remain susceptible.1 In this 
regard, it is evident that new molecules and novel BLICs 
with in vitro activity against DTR-GNB, only partially 
address the currently prevalent mechanisms of resistance 
(Table 1).9,10 As such, effective therapy is dependent on 
accurate and prompt identification of the organism, and on 
phenotypic and genotypic antimicrobial susceptibility and 
mechanisms of resistance testing, respectively.

Ceftazidime-avibactam (CA) and ceftolozane-tazobactam 
(CT) are the first of the new generation BLICs registered in 
South Africa. The potential for uncontrolled use of these 
agents as a ‘one-size fits all’ treatment for DTR-GNB will 
prove catastrophic for their future preservation as viable 
therapeutic options. Ceftolozane-tazobactam and CA were 

previously prescribed in South Africa as section 21 drugs 
since 2018, and utilisation data indicates a sharp increase in 
the compound annual growth rate, specifically a 383% 
increase of CA consumption, over the past three years (Data 
on file). The utilisation is almost exclusively driven by the 
private sector, where CA is also the dominant agent of the 
two, with an overall 100% market share. The global 
temporary recall of CT at the beginning of 2021 by the 
manufacturer, as well as other stock issues relating to this 
new BLIC are some of the reasons for exclusive CA 
consumption. 

The objectives of the article’s recommended approach to the 
management of MDR- and DTR-GNB (i.e. mechanism-based 
inhibition therapy) are to:

•	 Optimise patient outcomes in settings where there has 
been increasing dependence on colistin as salvage 
monotherapy. 

•	 Avoid redundant and inappropriate use of CA and CT, 
from an ABS and cost-containment point-of-view.

•	 Ensure the longevity of existing broad-spectrum agents 
(i.e. carbapenems, ceftazidime, cefepime, tigecycline, 
piperacillin-tazobactam and colistin) and the new 
antibiotics (i.e. CT and CA and those that follow). 

TABLE 1: List of the new agents for difficult-to-treat resistant Gram-negatives.†
Antibiotic ESBL KPC OXA-48 MBL CRPA CRAB

β-lactam/β-lactamase inhibitors
Meropenem/vaborbactam ✓ ✓ - - - -
Meropenem/nacubactam ✓ ✓ ✓ - - -
Meropenem/QPX7728 ✓ ✓ ✓ ✓ ± ✓
Imipenem/relebactam ✓ ✓ - - ✓ -
Ceftazidime/avibactam† ✓ ✓ ✓ - ✓ -
Ceftolozane/tazobactam† ✓ - - - ✓ -
Cefepime/tazobactam ✓ - ✓ - - -
Cefepime/enmetazobactam ✓ - - - - -
Cefepime/zidebactam ✓ ✓ ✓ ✓ ± ±
Cefepime/VNRX5133 ✓ ✓ ✓ ± ± -
Cefepime/QPX7728 ✓ ✓ ✓ ✓ ± -
Ceftibuten/VNRX-7145 ✓ - - - - -
Ceftibuten/QPX7728 ✓ ✓ ✓ - - -
Cefpodoxime/ETX-0282 ✓ - - - - -
Aztreonam/avibactam ✓ ✓ ✓ ✓ - -
Sulbactam/durlobactam ✓ ✓ ✓ ✓ - ✓
β-lactams
Cefiderocol ✓ ✓ ✓ ± ✓ ±
Tebipenem ✓ - - - - -
Sulopenem ✓ - - - - -
Aminoglycosides
Plazomicin ✓ ✓ ✓ ± - -
Tetracyclines
Eravacycline ✓ ✓ ✓ ✓ - ±
Polymyxins
SPR741 plus β-lactams ✓ ±‡ ±‡ - - ✓
SPR206 ✓ ✓ ✓ ✓ ✓ ✓
QPX9003 ✓ ✓ ✓ ✓ ✓ ✓

Source: Paterson DL, Isler B, Stewart A. New treatment options for multiresistant gram negatives. 
Curr Opin Infect Dis. 2020;33(2):214–223. https://doi.org/10.1097/ QCO.0000000000000627 
ESBL, extended spectrum β-lactamases; KPC, Klebsiella pneumoniae carbapenemase; OXA-
48, Oxacillinase-48; MBL, Metallo-beta-lactamases; CRPA, Carbapenem-resistant 
Pseudomonas aeruginosa; CRAB, Carbapenem-resistant Acinetobacter baumannii.
†, Only ceftazidime-avibactam and ceftolozane-tazobactam are registered in South Africa.
‡, Active against Escherichia coli, inactive against Klebsiella pneumoniae.
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Mechanisms of resistance as a 
confounder in antibiotic stewardship
The mechanisms by which GNB develop and express 
resistance, may interfere with several facets of ABS and impact 
on clinical treatment pathways, including the choice of an 
empiric antibiotic regimen, the potential for de-escalation, and 
the management of clinical failure because of the emergence of 
resistance on therapy.11,12 Antibiotic resistance in GNB results 
from the expression of antibiotic-inactivating enzymes and 
non-enzymatic mechanisms, both of which may be intrinsically 
expressed by a given species (chromosomal genes) or acquired 
by a subset of strains as a consequence of two distinct, albeit 
not mutually exclusive, genetic events3:

•	 Mutations in chromosomal genes resulting in an increase 
in the expression of intrinsic resistance mechanisms, such 
as antibiotic-inactivating enzymes, efflux pumps, 
permeability alterations mediated by loss of outer 
membrane porins or target modifications. A key feature 
of these determinants is that exposure to a given class 
may also select mutants with resistance to other often 
unrelated antibiotic classes.

•	 Horizontal transfer of mobile genetic elements carrying 
resistance genes, most notably plasmids encoding for 
β-lactamases (such as carbapenemases), and 
aminoglycoside-modifying enzymes, or non-enzymatic 
mechanisms resulting in fluoroquinolone resistance.

In non-fermenting GNB such as P. aeruginosa, MDR and DTR 
may emerge following sequential chromosomal mutations, 
which may lead to the overproduction of intrinsic 
β-lactamases such as AmpC and hyperexpression of efflux 
pumps, target modifications and permeability alterations.3,7 
P. aeruginosa also has the ability to acquire mobile genetic 

elements encoding for resistance determinants, including 
carbapenemases such as VIM, which is particularly prevalent 
in SA.7,13,14,15 The spontaneous mutation rate for expression of 
resistance may occur as frequently as 1 in 106 to 1 in 107 wild 
type strains. This process may be accelerated by the use of 
antibiotics with anti-pseudomonal activity, particularly if 
therapy is prolonged.16

With this in mind, ABS should preferably involve the 
application of certain fundamental tenets when selecting 
antibiotics for treatment of DTR-GNB, chief among which are 
the following:

•	 Early source control is critical to a good outcome. 
Depending on the source, this may involve debridement, 
laparotomy, thoracotomy, medical device removal (e.g. 
urine catheters, intravenous/intra-arterial catheters) and 
drainage of abscesses. 

•	 Antibiotics with anti-pseudomonal activity (e.g. ceftazidime, 
cefepime, piperacillin-tazobactam, imipenem, meropenem 
and ciprofloxacin) should preferably be restricted to those 
patients at risk for (empiric therapy), or infected with 
(directed therapy) P. aeruginosa.

•	 If risk factors for pseudomonal infection are absent, 
agents with minimal or no anti-pseudomonal activity 
(e.g. amoxicillin-clavulanate, ceftriaxone and ertapenem) 
would be preferred.16

Conceptual approach to 
mechanism-based therapy
The available evidence regarding the use of currently 
available BLICs, as well as an emerging body of data on 
novel non-β-lactam agents in the antibiotic development 
pipeline, require a paradigm shift with regard to how, we 
recommend the use of both currently available and new 
antibiotics. 

ESBL, extended spectrum β-lactamases; CTX-M, Cefotaximase – Munich; KPC, Klebsiella pneumoniae carbapenemase; GES, Guiana-Extended-Spectrum β-lactamase; NDM, New-Delhi metallo-β-
lactamase; VIM, Verona Integron-encoded metallo-β-lactamase; IMP, Imipenemases; OXA-48, Oxacillinase-48.
† Any novel β-lactamase inhibitor combination (BLIC) in the pipeline to be stratified pending spectrum of activity or β-lactamase inhibition.
‡ As per Table 2, Table 3 and Table 4, ceftazidime-avibactam and ceftolozane-tazobactam only recommended as alternative treatment, when preferred 1st line antibiotics are not susceptible, not 
available or tolerated or in cases of confirmed bacteriological and clinical failure.
§ Currently in Phase IIIb trials.
¶ Morganella morganii, Providencia stuartii and Providencia rettgeri.

FIGURE 1: Conceptual approach to β-lactamase inhibitor therapy for severe infections.
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Translating microbiological data relating to β-lactamase 
genealogy in South Africa into clinical practice, and 
enablement of this information at the bedside remain a 
formidable challenge. β-lactamases such as OXA-48 (and 
its  variants) and NDM-1, either alone, or simultaneously 
present on plasmids, are the predominant carbapenemases 
among Enterobacterales with very few, or no K. pneumoniae 
carbapenemases (KPC), or other carbapenemases evident.4,5,6 
However, recent unpublished data suggest a steady increase 
in KPC in Gauteng province. In P. aeruginosa-BSIs in South 
Africa,7 metallo-β-lactamases (MBL) such as VIM and the 
Ambler class C AmpC enzymes predominate, and in 
addition, MDR efflux pumps are expressed in the majority 
of the non-susceptible isolates investigated. 

Therefore, recommendations for antibiotic use should be 
strategic and should rely, in the case of new BLICs, on 
categorisation by ability to inhibit specific β-lactamases, 
when directed therapy is required (Figure 1). Hence, in order 
to minimise antibiotic selective pressure, a ‘Best Practice’ 
guide for existing and new antibiotic options in the South 
African context (Table 2, Table 3 and Table 4), which includes 
dose and administration strategies for critically ill patients, 
is proposed (Table 5).17,18

Extended-spectrum β-lactamase-
producing Enterobacterales
Some β-lactamase inhibitors inhibit ESBLs. Although 
hyperproduction of β-lactamases or additional resistance 

mechanisms may hamper the activity of these compounds, the 
previous generation BLICs such as piperacillin-tazobactam, 
remain active in vitro against a considerable proportion of 
ESBL-producing GNB. However, the use of non-carbapenem 
β-lactams for the treatment of ESBL infections has yielded 
conflicting and controversial results.19,20,21

Until the results of the MERINO trial (piperacillin-tazobactam 
versus meropenem for the treatment of BSIs caused by 

TABLE 3: Recommended intravenous antibiotic treatment options for AmpC 
producing bacteria.†,‡
Source Preferred treatment Alternative treatment¶¶
Pseudomonas aeruginosa
Pyelonephritis or 
complicated UTI§

Ciprofloxacin
or
Aminoglycosides
or
Ceftazidime
or
Cefepime
or
Piperacillin-tazobactam

Meropenem
or
Imipenem-cilastin
or
Colistin or polymyxin B

Infections outside of the 
urinary tract 

Ceftazidime
or
Cefepime
or
Piperacillin-tazobactam 
or
Meropenem
or
Imipenem-cilastatin
or
Colistin or polymyxin B

Aminoglycosides
(Limited to uncomplicated 
bloodstream infections with 
complete source control¶)
or
Ceftolozane-tazobactam††

Enterobacterales (SPICE)‡‡
Pyelonephritis or 
complicated UTI§

Ciprofloxacin
or
Aminoglycosides
or
Piperacillin-tazobactam
or
Cefepime
or
Ertapenem

Meropenem
or
Imipenem-cilastin

Biliary sepsis Piperacillin-tazobactam   
or
Cefepime
or
Ertapenem

Meropenem
or
Imipenem-cilastin
or
Ceftolozane-tazobactam††

Complicated intra-
abdominal infections

Tigecycline§§
or
Piperacillin-tazobactam
or 
Cefepime
or
Ertapenem

Meropenem
or
Imipenem-cilastin
or
Ceftolozane-tazobactam††

Pneumonia Piperacillin-tazobactam
or 
Cefepime
or
Ertapenem

Meropenem
or
Imipenem-cilastin
or
Ceftolozane-tazobactam††

Primary bacteraemia Ertapenem Meropenem
or
Imipenem-cilastin
or
Ceftolozane-tazobactam††

UTI, urinary tract infection; SPICE, Serratia spp., P. aeruginosa, indole-positive Proteeae 
(Morganella morganii, Providencia rettgeri and Providentia stuartii), Citrobacter spp., and 
Enterobacter spp.; XDR, extensive drug-resistant; PDR, pan-drug-resistant.
†, Assuming in vitro susceptibility to agents in the table.
‡, Refer to Table 5 for recommended dosing and administration schedules for adult critically 
ill patients with normal renal function.
§, Complicated UTI, is defined as ‘UTI that occurs in association with a structural or functional 
abnormality of the genitourinary tract, or any UTI in a male patient’. This excludes UTIs in 
catheterised patients or caused by a resistant bacterium.
¶, Uncomplicated bloodstream infections include a bloodstream infection that is because of 
a urinary source or a catheter-related bloodstream infection with removal of the infected 
vascular catheter.
††, Ceftolozane-tazobactam only in difficult-to-treat resistant infections that is, as an 
antibiotic of last resort.
‡‡, Very little data to guide colistin or polymyxin combination therapy or otherwise for AmpC-
producing Enterobacterales is available and therefore these antibiotics have not been included.
§§, Morganella spp., Proteus spp. and Providencia spp. are inherently resistant to tigecycline.
¶¶, If 1st line options are not susceptible, not available or tolerated or in cases of confirmed 
bacteriological and clinical failure.

TABLE 2: Recommended intravenous antibiotic treatment options for extended-
spectrum β-lactamase producing Enterobacterales.†,‡,§
Source Preferred treatment Alternative treatment§§
Pyelonephritis or complicated UTI¶

Aminoglycosides
or
Fluoroquinolones 
(ciprofloxacin, levofloxacin)
or
Piperacillin-tazobactam††
or
Ertapenem

Meropenem
or
Imipenem-cilastatin

Infections outside of the urinary tract
Complicated intra-
abdominal infections

Tigecycline
or
Piperacillin-tazobactam††
or
Ertapenem

Meropenem
or
Imipenem-cilastatin

Pneumonia Piperacillin-tazobactam††
or
Ertapenem

Meropenem
or
Imipenem-cilastatin

Bloodstream infections Aminoglycosides‡‡
or
Ertapenem

Meropenem
or
Imipenem-cilastatin

UTI, urinary tract infections; BLIC, β-lactamase inhibitor combinations; MIC, minimum 
inhibitory concentration.
†, Assuming in vitro susceptibility to agents in the table.
‡, Refer to Table 5 for recommended dosing and administration schedules for adult critically 
ill patients with normal renal function.
§, From a strategic point-of-view, ceftazidime-avibactam and ceftolozane-tazobactam are not 
recommended for extended-spectrum β-lactamase producing Enterobacterales infections.
¶, Complicated UTI, is defined as ‘UTI that occurs in association with a structural or functional 
abnormality of the genitourinary tract, or any UTI in a male patient’. This excludes UTIs in 
catheterised patients or caused by a resistant bacterium.
††, Only if MIC ≤ 4.
‡‡, If extended-spectrum β-lactamase producing Enterobacterales bloodstream infection is 
secondary to urinary source.
§§, If 1st line options are not susceptible, not available or tolerated or in cases of confirmed 
bacteriological and clinical failure.
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ceftriaxone-resistant Escherichia coli or K. pneumoniae) were 
published,20,21 based on previous comparative studies and 
reviews that reported the potential role of BLICs in treatment 
of serious ESBL-infections, piperacillin-tazobactam appeared 
to be a reasonable option for: 22,23

•	 Low- to moderate-severity infections in non-critically ill 
patients.

•	 Infections resulting from urinary or biliary sources.
•	 Infections with piperacillin minimum inhibitory 

concentration (MICs) ≤ 4 µg/mL.

In the MERINO trial, however, 30-day mortality was 
12.3% in patients randomised to piperacillin-tazobactam 
versus 3.7% in those randomised to meropenem.20,21 
Nevertheless, the results of the MERINO study have been 
shown to have numerous biases. Henderson et al.24 
reviewed the association of piperacillin-tazobactam and 
meropenem MICs and β-lactam resistance genes with 
mortality in the MERINO trial. According to reference 
broth microdilution, almost 20% of isolates were 
incorrectly categorised as susceptible, highlighting issues 
with piperacillin-tazobactam susceptibility testing itself. 
A high combined prevalence of OXA-1 β-lactamase and 
ESBLs was also demonstrated. Differences in outcome 
may also have related to the varying piperacillin-
tazobactam dosing and administration schedules used.22,25

Therefore, piperacillin-tazobactam may be a carbapenem-
sparing agent for BSIs as directed therapy, if the criteria are 
met, and dose is optimised and response to treatment is 
closely monitored (Table 5). Regarding the new BLICs, given 
its limited utility in South Africa because of the high 

TABLE 4: Recommended intravenous antibiotic treatment options for 
carbapenem-resistant Enterobacterales.†,‡
Source Preferred treatment Alternative treatment¶¶¶
Pyelonephritis or complicated UTI§

Aminoglycosides
or
Ciprofloxacin

Meropenem or imipenem-
cilastatin

Infections outside of the urinary tract¶ 
Biliary sepsis Meropenem or 

imipenem-cilastatin†† 
plus
2nd active antibiotic
or
Tigecycline§§
with/out
2nd active antibiotic
or
Colistin or polymyxin B¶¶
plus 
2nd active antibiotic 

Ceftazidime-avibactam (OXA-48, 
KPC, GES)‡‡
or
Aztreonam
plus
Ceftazidime-avibactam (NDM, 
IMP, VIM)‡‡

Complicated 
intra-abdominal 
infections

Meropenem or 
imipenem-cilastatin††
plus
2nd active agent
or
Tigecycline§§
plus
2nd active antibiotic
or
Colistin or polymyxin¶¶
plus
2nd active antibiotic 

Ceftazidime-avibactam (OXA-48, 
KPC, GES)‡‡,†††
or
Aztreonam
plus
Ceftazidime-avibactam (NDM, 
IMP, VIM)‡‡,†††

Pneumonia Meropenem or 
imipenem-cilastatin††
plus
2nd active agent
or
Colistin or polymyxin B¶¶
plus 
2nd active antibiotic

Ceftazidime-avibactam (OXA-48, 
KPC, GES)‡‡
or
Aztreonam
plus
Ceftazidime-avibactam (NDM, 
IMP, VIM)‡‡

Primary bacteraemia Meropenem or 
imipenem-cilastatin††
plus
2nd active agent
or
Colistin or polymyxin B¶¶
plus
2nd active antibiotic

Ceftazidime-avibactam (OXA-48, 
KPC, GES)‡‡
or
Aztreonam
plus
Ceftazidime-avibactam (NDM, 
IMP, VIM)‡‡

UTI, urinary tract infections; OXA-48, Oxacillinase-48; MBL, Metallo-β-lactamase; NDM, 
New-Delhi metallo-β-lactamase; VIM, Verona Integron-encoded metallo-β-lactamase; IMP, 
Imipenemases; KPC, Klebsiella pneumoniae carbapenemase; MIC, minimum inhibitory 
concentration. 
†, Assuming in vitro susceptibility to agents in the table.
‡, Refer to Table 5 for recommended dosing and administration schedules for adult critically 
ill patients with normal renal function.
§, Complicated UTI, is defined as ‘UTI that occurs in association with a structural or functional 
abnormality of the genitourinary tract, or any UTI in a male patient’. This excludes UTIs in 
catheterised patients or caused by a resistant bacterium.
¶, In certain clinical scenarios, and requiring close monitoring for clinical response, 
monotherapy with an active agent may be considered by a stewardship team.
††, According to carbapenem MIC and reported as susceptible. Generally, if MIC reported as 
≤8 mg/L combine with another active agent while if MIC ≤ 2 mg/L, monotherapy at optimised 
dosing, may be considered in selected cases.
‡‡, Ceftazidime-avibactam only in difficult-to-treat infections that is, as an antibiotic of last 
resort.
§§, Morganella spp., Proteus spp. and Providencia spp. are inherently resistant to tigecycline.
¶¶, Proteus spp., Serratia marcescens, Providencia spp. and Morganella morganii are 
inherently resistant to colistin and polymyxin B.
†††, Complicated intra-abdominal infections are the indication with the most scope for 
inappropriate use of ceftazidime-avibactam and resistance emerging relating to prolonged 
use without adequate source control.
¶¶¶, If 1st line options are not susceptible, not available or tolerated or in cases of confirmed 
bacteriological and clinical failure.

TABLE 5: Recommended intravenous antibiotic dosing and administration 
schedules for critically ill adult patients (with normal renal function).†
Agent Dosing and administration schedules

Aminoglycosides‡
Amikacin 15 mg/kg – 30 mg/kg once daily
Gentamicin 7 mg/kg once daily
Tobramycin 7 mg/kg once daily
ΒLICs
Ceftazidime-avibactam 2.5 g 8-hourly, infused over 2 h
Ceftolozane-tazobactam 3 g 8-hourly, infused over 1 h 
Piperacillin-tazobactam 4.5 g loading§, 4.5 g 6-hourly infused over 3 h or 18 g 

infused over 24 h
Carbapenems
Ertapenem 1 g once-daily or 12-hourly, infused over 1 h
Doripenem¶ 1 g 8-hourly, infused over 4 h
Imipenem 1 g 6–8 hourly, infused over 1–3 h
Meropenem 2 g 8–hourly, infused over 3 h
Cephalosporins
Cefepime 2 g loading§, 2 g 8-hourly infused over 4 h or 6 g 

infused over 24 h
Ceftazidime 2 g loading§, 2 g 8-hourly infused over 4 h or 6 g 

infused over 24 h
Fluoroquinolones
Ciprofloxacin 400 mg 8-hourly
Levofloxacin 750 mg once daily
Polymyxins
Colistin†† 9 MU – 12 MU loading, 3 MU 8-hourly or 4.5 MU 

12-hourly (60 kg)
Polymyxin B‡‡ 20 000 IU/kg – 25 000 IU/kg (2 mg/kg – 2.5 mg/kg) 

loading dose and 12 500 IU/kg – 15 000 IU/kg 
(1.25 mg/kg – 1.5 mg/kg) 12-hourly

Tigecycline 200 mg loading§, 100 mg 12-hourly

BLICs: β-lactam β-lactamase inhibitor combinations.
†, Maximum dosing to account for pharmacokinetic disturbances in this population and to 
target the upper end of clinical breakpoints. 
‡, Subsequent doses and dosing interval should be based on pharmacokinetic evaluation 
and use of therapeutic drug monitoring.
§ Typically, maintenance doses are begun 30 min – 1 h following administration of the 
loading dose.
¶, Doripenem at standard doses has no advantage over group 2 carbapenems for susceptible 
Gram-negatives.
††,  For renal impairment, continuous renal replacement therapy and haemodialysis refer to 
the consensus colistin guideline, South Africa.18

‡‡,  Polymyxin B, unlike colistin, is administered in its active state and not as a prodrug. 
Hence it has superior pharmacological properties with less pharmacokinetic variability and 
dosing that is independent of renal function.
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prevalence of metallo-β lactamases, specifically VIM in P. 
aeruginosa, CT should be investigated as a carbapenem-
sparing strategy for serious ESBL infections.

Regarding carbapenems, ertapenem as a class 1 carbapenem 
with no, or limited, activity against non-fermentative GNB 
including Pseudomonas, remains particularly suitable for 
ESBL-GNB infections.26 This includes BSI, as recently 
highlighted in a multinational retrospective cohort study 
(INCREMENT) in which comparable outcomes, for empiric 
and targeted therapy of mono-microbial BSI because of 
ESBL-producing pathogens, were seen with ertapenem and 
the broader spectrum carbapenems.27 The advantage of 
recommending ertapenem as a treatment option in this 
setting is that the drug does not appear to increase antibiotic 
resistance in P. aeruginosa.28,29,30

For patients with BSI because of ESBL-producing 
Enterobacterales, with severe infection, imipenem or 
meropenem instead of ertapenem has been recommended.31 
However, this remains contentious with recent studies 
not  demonstrating differences in outcomes, even in 
patients with septic shock.32 The distinct pharmacokinetic 
differences between ertapenem and the other carbapenems 
may account for conflicting findings and, therefore, 
choice of carbapenem in critically ill patients should best 
be decided by multi-disciplinary teams or institutional 
guidelines.

AmpC-producing Gram-negative 
bacteria 
AmpC resistance can be classified into three categories33:

•	 Inducible chromosomal resistance that emerges in vivo 
when in the presence of a β-lactam compound [historically 
referred to as ‘SPICE’ genera [Serratia spp., P. aeruginosa, 
indole-positive Proteeae (Morganella morganii, Providencia 
rettgeri and Providentia stuartii), Citrobacter spp. and 
Enterobacter spp.]

•	 Stable de-repression because of mutations in the AmpC 
regulatory genes (e.g. certain E. coli and Shigella spp.)

•	 The presence of plasmid-mediated AmpC genes that 
produce these β-lactamases regardless of the presence of 
a β-lactam antibiotic (e.g. certain E. coli, K. pneumoniae and 
Salmonella spp.). 

It is important to note, that infections that pose a management 
conundrum, relate to the emergence of clinically relevant 
AmpC expression during antibiotic treatment, which has 
most frequently been described for Enterobacter cloacae, 
Klebsiella aerogenes (formerly Enterobacter aerogenes) and 
Citrobacter freundii.33,34 In this regard, few studies have 
provided reliable insights into effective management 
approaches for infection caused by such AmpC-producers. 
Nonetheless, it may be prudent to avoid third generation 
cephalosporins for the treatment of these organisms posing 
the greatest risk of AmpC induction. This has best been 
described in the context of especially, E. cloacae infections, 
even if susceptible in vitro. 

In contrast, piperacillin-tazobactam and cefepime are potential 
directed therapeutic options in the treatment of susceptible 
AmpC producing bacteria. Both piperacillin and tazobactam 
are weak inducers of Amp-C β-lactamases.33,34 Cefepime has 
the advantage of being a weak inducer while withstanding 
hydrolysis by AmpC β-lactamases because of the formation of 
a stable acyl enzyme complex. As such the available clinical 
evidence does not support the use of alternative agents over 
piperacillin-tazobactam or cefepime, nor that resistance 
should be inferred (reporting an agent as resistant on the 
antibiogram) based on the Amp-C phenotype if piperacillin-
tazobactam or cefepime is susceptible in vitro.34,35 Based on a 
systematic review and meta-analysis comparing the effects 
of  different antibiotics on mortality in patients with BSIs 
caused  by Enterobacterales-producing chromosomal AmpC 
β-lactamases, no strong evidence exists to suggest that 
piperacillin-tazobactam, cefepime or quinolones are inferior 
to carbapenems (meropenem or imipenem), provided that 
they are susceptible.36 Notably, there are no comparative data 
evaluating outcomes of ertapenem treatment for infections 
with AmpC-producing Enterobacterales.

Piperacillin-tazobactam (at a MIC ≤ 8 mg/L) and cefepime (at 
a MIC ≤ 2 mg/L) offer a carbapenem-sparing opportunity as 
directed therapy of susceptible Amp-C organisms, particularly 
for those Enterobacterales that have a low risk for clinically 
significant over-expression of AmpC (< 5%) such as 
S. marcescens, M. morganii and Providencia spp. In E. cloacae and 
K. aerogenes infections, de-escalation to piperacillin-
tazobactam or cefepime may be considered once the MIC is 
known. 

Therefore, it is reasonable to base treatment decisions for 
AmpC producers on:

•	 In vitro susceptibility
•	 Site of infection
•	 Clinical status
•	 Enhanced drug dosing and administration strategies
•	 Obtaining adequate source control
•	 Close monitoring to evaluate clinical responses. 

Regarding the new BLICs, clinical data regarding the efficacy 
of CT and CA in the treatment of infections caused by AmpC- 
producing isolates are limited.37 Ceftolozane-tazobactam and 
CA have similar spectra of antibacterial activity, but with 
some important differences. The key microbiologic difference 
is that avibactam inhibits carbapenemases, particularly KPC 
and OXA-48, while tazobactam does not. Notably, although 
tazobactam does not inhibit Amp-C β-lactamases, recent data 
have demonstrated that CT is active in vitro against 99.7% and 
94.7% of isolates with moderately and strongly up-regulated 
efflux mechanisms respectively, and also against 96.6% of 
bacteria with de-repressed AmpC, confirming earlier data 
that ceftolozane may overcome the two most prevalent 
mechanisms of resistance (up-regulated efflux and de-
repressed AmpC) in P. aeruginosa.38 While both CT and CA 
have been shown to be microbiologically and clinically 
effective in ESBL, AmpC and P. aeruginosa infections,39,40,41 
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from a stewardship point of view, the specific efficacy of CT 
against MDR SPICE bacteria, upon failure of preferred agents, 
is important (Table 3).

In a global cohort of CR P. aeruginosa, including isolates 
from one centre in Cape Town, South Africa, CA was the 
most active agent with 72% susceptibility as per CLSI 
breakpoints compared with 63% for CT.14 In the cohort, 
87% were genotypically positive for a carbapenemase with 
the most common being the MBLs; VIM most frequently 
followed by class A GES, which explains the relatively 
lower CT activity. In this regard, comparative CT 
antibiograms for CR-P. aeruginosa in South Africa should 
be performed, to ascertain geographic differences in non-
susceptibility and inform potential use. In the study, 46% 
of isolates remained susceptible to both ceftazidime and 
cefepime.14 Notably, 90% and 86% of carbapenemase-
negative CR isolates remained susceptible to CA and CT, 
respectively.14

Soon after registration in the United States of America, 
several studies reported the in vivo emergence of CT resistance 
in MDR-P. aeruginosa, associated with de novo mutations, 
rather than by acquisition of resistance from nosocomial 
isolates.42,43 Further studies are, therefore, necessary to 
optimise and validate administration techniques designed to 
minimise emergence of resistance, such as infusion strategies 
derived from PK/PD data, and to verify the mechanism by 
which resistance occurs in vivo.42,44

Overall, the data as presented seem to support the preferred 
stratified and strategic use of CT in the management of 
serious infections with AmpC producers in the absence of 
MBLs as directed therapy particularly for DTR-P. aeruginosa 
(Figure 1, Table 3).

Carbapenemase-producing 
Enterobacterales
The clinical activity of CA against MDR-Enterobacterales 
and P. aeruginosa isolates, pooled from the various adult 
Phase III clinical trials (complicated intra-abdominal 
infection [cIAI] [RECLAIM 1 and 2; RECLAIM 3], complicated 
urinary tract infection [cUTI] [RECAPTURE 1 and 2], 
hospital-acquired pneumonia [HAP], including ventilator-
associated pneumonia [VAP] [REPROVE] and cIAI or cUTI 
caused by ceftazidime-non-susceptible GNB [REPRISE]) 
demonstrated, that CA has similar clinical efficacy to 
predominantly carbapenem comparators against MDR 
Enterobacterales and P. aeruginosa.45

Ceftazidime-avibactam may improve outcomes among 
patients with CRE infections and appear to be superior to 
conventional therapies, including colistin, against BSI caused 
by KPC with clinical cure in the majority of DTR infections 
that had failed previous therapy.46,47,48,49,50 Qualitative evidence 
of successful use of CA for treatment of hospitalised patients 
with GNB infections with limited treatment options, based 

on clinical and microbiological outcomes and mortality, 
including evidence of effectiveness against CRE and MDR-P. 
aeruginosa, were recently reviewed.51

Ceftazidime-avibactam also has more favourable PK 
characteristics than colistin and has been shown to be better 
tolerated and several positive cost-effectiveness analyses 
have also been reported for BSIs, HAP and VAP.52,53 
Outcomes evaluated included quality-adjusted life-years, 
healthcare costs and incremental cost-effectiveness ratios. 
These studies found that CA was cost-effective for CRE-
BSIs and -pneumonia based on accepted willingness to-
pay-standards in both the United States (US) and Italy.52,53 
Similar conclusions were reached for low- to middle-income 
countries for CA versus colistin for CRE-BSIs and 
pneumonia in Peru.54

Particularly relevant to South Africa, recent reports have 
focused on the role of CA in OXA-48-producing bacteria.55,56 
Avibactam is a diazabicyclooctane (DBO), which is a non 
β-lactam β-lactamase inhibitor that may have the ability to 
inhibit OXA-48 β-lactamases by forming a stable covalent 
complex. Although combination therapy is thought to 
improve the likelihood of clinical cure and survival in severe 
CPE infections, successful outcomes have been seen in 
approximately 70% of patients with infections caused 
by  OXA-48-producing Enterobacterales treated with CA 
monotherapy.55,56 A recent review confirmed no significant 
differences in mortality in the treatment of CRE infections with 
CA-combination therapy compared to CA-monotherapy.57 
Ceftazidime-avibactam thus shows promising results as 
monotherapy, and of the BLICs, is currently the preferred 
agent for the treatment of patients with severe infections 
because of OXA-48-producing Enterobacterales.58

Several studies have demonstrated in vivo development of 
resistance following relatively short courses (10–19 days) of 
therapy for KPC-BSIs.59,60 For CA, resistance mostly occurs in 
K. pneumoniae ST258 harbouring D179Y substitutions in the 
KPC enzyme, and proliferation of these KPC variants 
threatens its future use.61,62,63 Notably, reports on the rise of 
resistance to CA are alarming, not only in K. pneumoniae, but 
recently among other common Enterobacterales species. Of 
major concern, in the South African private sector CA non-
susceptibility in CR-K. pneumoniae ranges between 10% and 
20% and increases to 38% in those isolates causing BSIs where 
concurrent OXA-48, NDM, or VIM carbapenemases are 
present (Data on file).

In line with the proposed conceptual approach to BLIC 
therapy (Figure 1) and ‘Best practices’ for use of existing and 
new antibiotic options (Table 4), CA is recommended as 
directed therapy for severe OXA-48 producing infections, on 
bacteriological or clinical failure of preferred agents. 

Conclusion
The introduction of CT and CA into hospital formularies 
should be considered with great care, preferably with pre-
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planned stewardship-guided interventions emphasising 
their positioning as therapeutic options (Box 1). The focus on 
appropriate stewardship practices is vital to maximise the 
efficacy and longevity of all new agents that enter clinical 
practice. Preferably, no hospital should be allowed to 
implement the use of these drugs without the oversight of an 
infectious disease specialist, an experienced intensivist, 
microbiologist and pharmacists ABS teams. These new 
agents are generally not suitable for empiric use and as such 
is discouraged. Other clinical management challenges relate 
to uncertainty as to whether the new BLICs should be used as 
mono- or combination therapy.

The emergence of antibiotic resistance after short courses 
of therapy with CT and CA highlights the importance of 
establishing strict criteria for the use of these drugs and 
the continuing need for new antibiotics. Moreover, it 

substantiates the fact that these antibiotics at the current 
time, are the archetypal ‘antibiotics of last resort’. It further 
emphasises the ongoing challenges of treating infections 
caused by DTR-GNB species, and the substantial threat 
that resistance poses to other novel BLICs and future drug 
development. ‘An antibiotic steward knows how to use an 
antibiotic, a good antibiotic steward knows when to use an 
antibiotic, and a great antibiotic steward knows when not to 
use an antibiotic’ (Adapted from a quote regarding 
surgeons65).
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